Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Environ Mol Mutagen ; 63(1): 37-63, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1620131

RESUMEN

This review considers antiviral nucleoside analog drugs, including ribavirin, favipiravir, and molnupiravir, which induce genome error catastrophe in SARS-CoV or SARS-CoV-2 via lethal mutagenesis as a mode of action. In vitro data indicate that molnupiravir may be 100 times more potent as an antiviral agent than ribavirin or favipiravir. Molnupiravir has recently demonstrated efficacy in a phase 3 clinical trial. Because of its anticipated global use, its relative potency, and the reported in vitro "host" cell mutagenicity of its active principle, ß-d-N4-hydroxycytidine, we have reviewed the development of molnupiravir and its genotoxicity safety evaluation, as well as the genotoxicity profiles of three congeners, that is, ribavirin, favipiravir, and 5-(2-chloroethyl)-2'-deoxyuridine. We consider the potential genetic risks of molnupiravir on the basis of all available information and focus on the need for additional human genotoxicity data and follow-up in patients treated with molnupiravir and similar drugs. Such human data are especially relevant for antiviral NAs that have the potential of permanently modifying the genomes of treated patients and/or causing human teratogenicity or embryotoxicity. We conclude that the results of preclinical genotoxicity studies and phase 1 human clinical safety, tolerability, and pharmacokinetics are critical components of drug safety assessments and sentinels of unanticipated adverse health effects. We provide our rationale for performing more thorough genotoxicity testing prior to and within phase 1 clinical trials, including human PIG-A and error corrected next generation sequencing (duplex sequencing) studies in DNA and mitochondrial DNA of patients treated with antiviral NAs that induce genome error catastrophe via lethal mutagenesis.


Asunto(s)
Antivirales/efectos adversos , Tratamiento Farmacológico de COVID-19 , Citidina/análogos & derivados , Daño del ADN/efectos de los fármacos , Hidroxilaminas/efectos adversos , Nucleósidos/efectos adversos , SARS-CoV-2/genética , Amidas/efectos adversos , Amidas/uso terapéutico , Antivirales/uso terapéutico , Citidina/efectos adversos , Citidina/uso terapéutico , Desoxiuridina/efectos adversos , Desoxiuridina/análogos & derivados , Desoxiuridina/uso terapéutico , Genoma Humano/efectos de los fármacos , Humanos , Hidroxilaminas/uso terapéutico , Mutagénesis/efectos de los fármacos , Nucleósidos/uso terapéutico , Pirazinas/efectos adversos , Pirazinas/uso terapéutico , Ribavirina/efectos adversos , Ribavirina/uso terapéutico , SARS-CoV-2/efectos de los fármacos
4.
J Infect Dis ; 224(3): 415-419, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1526165

RESUMEN

Mutagenic ribonucleosides can act as broad-based antiviral agents. They are metabolized to the active ribonucleoside triphosphate form and concentrate in genomes of RNA viruses during viral replication. ß-d-N4-hydroxycytidine (NHC, initial metabolite of molnupiravir) is >100-fold more active than ribavirin or favipiravir against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with antiviral activity correlated to the level of mutagenesis in virion RNA. However, NHC also displays host mutational activity in an animal cell culture assay, consistent with RNA and DNA precursors sharing a common intermediate of a ribonucleoside diphosphate. These results indicate highly active mutagenic ribonucleosides may hold risk for the host.


Asunto(s)
Antivirales/farmacología , Citidina/análogos & derivados , Mutágenos/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/efectos adversos , Células CHO/efectos de los fármacos , Células Cultivadas , Cricetulus , Citidina/efectos adversos , Citidina/farmacología , Relación Dosis-Respuesta a Droga , Mutagénesis/efectos de los fármacos , Mutágenos/efectos adversos , SARS-CoV-2/genética , Replicación Viral/efectos de los fármacos
5.
Nature ; 592(7853): 277-282, 2021 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1387425

RESUMEN

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for virus infection through the engagement of the human ACE2 protein1 and is a major antibody target. Here we show that chronic infection with SARS-CoV-2 leads to viral evolution and reduced sensitivity to neutralizing antibodies in an immunosuppressed individual treated with convalescent plasma, by generating whole-genome ultra-deep sequences for 23 time points that span 101 days and using in vitro techniques to characterize the mutations revealed by sequencing. There was little change in the overall structure of the viral population after two courses of remdesivir during the first 57 days. However, after convalescent plasma therapy, we observed large, dynamic shifts in the viral population, with the emergence of a dominant viral strain that contained a substitution (D796H) in the S2 subunit and a deletion (ΔH69/ΔV70) in the S1 N-terminal domain of the spike protein. As passively transferred serum antibodies diminished, viruses with the escape genotype were reduced in frequency, before returning during a final, unsuccessful course of convalescent plasma treatment. In vitro, the spike double mutant bearing both ΔH69/ΔV70 and D796H conferred modestly decreased sensitivity to convalescent plasma, while maintaining infectivity levels that were similar to the wild-type virus.The spike substitution mutant D796H appeared to be the main contributor to the decreased susceptibility to neutralizing antibodies, but this mutation resulted in an infectivity defect. The spike deletion mutant ΔH69/ΔV70 had a twofold higher level of infectivity than wild-type SARS-CoV-2, possibly compensating for the reduced infectivity of the D796H mutation. These data reveal strong selection on SARS-CoV-2 during convalescent plasma therapy, which is associated with the emergence of viral variants that show evidence of reduced susceptibility to neutralizing antibodies in immunosuppressed individuals.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/terapia , COVID-19/virología , Evolución Molecular , Mutagénesis/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Anciano , Alanina/análogos & derivados , Alanina/farmacología , Alanina/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Enfermedad Crónica , Genoma Viral/efectos de los fármacos , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Evasión Inmune/efectos de los fármacos , Evasión Inmune/genética , Evasión Inmune/inmunología , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/inmunología , Inmunización Pasiva , Terapia de Inmunosupresión , Masculino , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/inmunología , Mutación , Filogenia , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Factores de Tiempo , Carga Viral/efectos de los fármacos , Esparcimiento de Virus , Sueroterapia para COVID-19
6.
Nat Struct Mol Biol ; 28(9): 740-746, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1354110

RESUMEN

Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, ß-D-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.


Asunto(s)
COVID-19/prevención & control , Citidina/análogos & derivados , Hidroxilaminas/metabolismo , Mutagénesis/genética , ARN Viral/genética , SARS-CoV-2/genética , Animales , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , Secuencia de Bases , COVID-19/virología , Citidina/química , Citidina/metabolismo , Citidina/farmacología , Humanos , Hidroxilaminas/química , Hidroxilaminas/farmacología , Modelos Moleculares , Estructura Molecular , Mutagénesis/efectos de los fármacos , Mutación/efectos de los fármacos , Mutación/genética , Conformación de Ácido Nucleico , Unión Proteica/efectos de los fármacos , Conformación Proteica , ARN Viral/química , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos , Replicación Viral/genética , Tratamiento Farmacológico de COVID-19
7.
Drug Res (Stuttg) ; 71(3): 166-170, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-919370

RESUMEN

A recent outbreak of coronavirus disease 2019 (COVID-19) caused by the novel coronavirus designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) started in Wuhan, China, at the end of 2019 and then spread rapidly all over the world. However, there are no specific antiviral therapies for COVID-19, using the agents which approved or in development for other viral infections is one of the potentially quickest ways to find treatment for this new viral infection. Favipiravir is an effective agent that acts as a nucleotide analog that selectively inhibits the viral RNA dependent RNA polymerase or causes lethal mutagenesis upon incorporation into the virus RNA. In view of recent studies and discussion on favipiravir, in this mini review we aimed to summarize the clinical trials studying the efficacy and safety of favipiravir in patients with COVID-19.


Asunto(s)
Amidas/uso terapéutico , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , Pirazinas/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Amidas/farmacología , Antivirales/farmacología , COVID-19/virología , Ensayos Clínicos como Asunto , Humanos , Mutagénesis/efectos de los fármacos , Pirazinas/farmacología , ARN Viral/efectos de los fármacos , ARN Viral/genética , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Resultado del Tratamiento
8.
J Transl Med ; 18(1): 390, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: covidwho-863645

RESUMEN

While the COVID-19 pandemic has spurred intense research and collaborative discovery worldwide, the development of a safe, effective, and targeted antiviral from the ground up is time intensive. Therefore, most antiviral discovery efforts are focused on the re-purposing of clinical stage or approved drugs. While emerging data on drugs undergoing COVID-19 repurpose are intriguing, there is an undeniable need to develop broad-spectrum antivirals to prevent future viral pandemics of unknown origin. The ideal drug to curtail rapid viral spread would be a broad-acting agent with activity against a wide range of viruses. Such a drug would work by modulating host-proteins that are often shared by multiple virus families thereby enabling preemptive drug development and therefore rapid deployment at the onset of an outbreak. Targeting host-pathways and cellular proteins that are hijacked by viruses can potentially offer broad-spectrum targets for the development of future antiviral drugs. Such host-directed antivirals are also likely to offer a higher barrier to the development and selection of drug resistant mutations. Given that most approved antivirals do not target host-proteins, we reinforce the need for the development of such antivirals that can be used in pre- and post-exposure populations.


Asunto(s)
Antivirales , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Descubrimiento de Drogas , Necesidades y Demandas de Servicios de Salud , Interacciones Huésped-Patógeno/efectos de los fármacos , Neumonía Viral/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antivirales/clasificación , Antivirales/farmacología , Antivirales/uso terapéutico , Betacoronavirus/genética , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Sistemas de Liberación de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/normas , Descubrimiento de Drogas/organización & administración , Descubrimiento de Drogas/normas , Descubrimiento de Drogas/tendencias , Salud Global , Necesidades y Demandas de Servicios de Salud/organización & administración , Necesidades y Demandas de Servicios de Salud/normas , Necesidades y Demandas de Servicios de Salud/tendencias , Humanos , Mutagénesis/efectos de los fármacos , Evaluación de Necesidades/organización & administración , Evaluación de Necesidades/normas , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/virología , SARS-CoV-2 , Internalización del Virus/efectos de los fármacos
9.
Nat Commun ; 11(1): 4682, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: covidwho-779999

RESUMEN

The ongoing Corona Virus Disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has emphasized the urgent need for antiviral therapeutics. The viral RNA-dependent-RNA-polymerase (RdRp) is a promising target with polymerase inhibitors successfully used for the treatment of several viral diseases. We demonstrate here that Favipiravir predominantly exerts an antiviral effect through lethal mutagenesis. The SARS-CoV RdRp complex is at least 10-fold more active than any other viral RdRp known. It possesses both unusually high nucleotide incorporation rates and high-error rates allowing facile insertion of Favipiravir into viral RNA, provoking C-to-U and G-to-A transitions in the already low cytosine content SARS-CoV-2 genome. The coronavirus RdRp complex represents an Achilles heel for SARS-CoV, supporting nucleoside analogues as promising candidates for the treatment of COVID-19.


Asunto(s)
Amidas/farmacología , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Betacoronavirus/genética , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Pirazinas/farmacología , Amidas/farmacocinética , Animales , Antivirales/farmacocinética , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , ARN Polimerasa Dependiente de ARN de Coronavirus , Modelos Moleculares , Mutagénesis/efectos de los fármacos , Pandemias , Neumonía Viral/virología , Pirazinas/farmacocinética , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2 , Análisis de Secuencia , Células Vero , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA